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Over half a century ago, von Neumann and Richtmyer [1] introduced the

idea of adding artificial viscosity to the Euler equations in order to help sta-

bilize shock calculations. Their ideas regarding artificial viscosity influenced

Smagorinsky [2, 3] in his development of a subgrid-scale model designed to

match the Kolmogorov spectrum for atmospheric turbulence (C. E. Leith,

private communication). Since that time, numerous artificial viscosity for-

mulations have been proposed for simulating both shocks and turbulence

[4, 5, 6, 7, 8, 9, 10]. Over the years however, a rift has developed between

shock-capturing (monotonicity-preserving) and turbulence-capturing (large-

eddy simulation) methods. Artificial viscosities for shock-capturing typically

depend on sound speed, which makes them unsuitable for low Mach number

flows. On the other hand, subgrid-scale models, customized for incompressible

turbulence, usually fail to capture shocks in a monotonic fashion. The pur-

pose of this paper is to introduce an artificial viscosity suitable for computing
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shock-turbulence interactions. This is accomplished by extending the model

of Cook and Cabot [10] to multi-dimensions.

The Navier-Stokes equations for compressible flow of an ideal gas, with con-

stant specific heats, are (underline denotes tensor):

ρ̇ + ∇ · ρu = 0 , (1)

ṁ + ∇ · (ρuu + pδ − τ ) = 0 , (2)

Ė + ∇ · [Eu + (pδ − τ ) · u + q] = 0 , (3)

p = (γ − 1)ρe , (4)

where ρ is density, u is velocity, m = ρu is momentum p is pressure, δ is

the unit tensor, E = ρ(e + u · u/2) is total energy, e is internal energy and

γ = cp/cv is the ratio of specific heats. The viscous stress tensor, τ , is given

by

τ = µ(2S) + (β −
2

3
µ)(∇ · u)δ , (5)

where µ is dynamic (shear) viscosity, β is bulk viscosity and S is the symmetric

strain rate tensor

S =
1

2
(∇u + u∇) , (6)

where u∇ denotes the transpose of ∇u. The conductive heat flux vector, q,

is given by Fourier’s law, i.e.,

q = −σ∇T , (7)
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where σ is thermal conductivity and T = (γ − 1)e/R is temperature (with

R = cp−cv being the gas constant). At high Mach numbers and high Reynolds

numbers, the Navier-Stokes equations admit scales of motion too small to

practically resolve on numerical grids. A key problem in simulating such flows

is how to properly remove energy above the Nyquist wavenumber without

corrupting the remaining flow. We will demonstrate how an artificial viscosity

with spectral-like behavior can accomplish this objective.

Our approach is to add grid-dependent components to the viscosity coeffi-

cients, i.e., µ = µf + µ∆ and β = βf + β∆ are used in (5), where the f

subscript denotes physical viscosity and the ∆ subscript denotes artificial vis-

cosity. Spectral-like models for µ∆ and β∆ are

µ∆ = Cr
µη

r

β∆ = Cr
βηr

, ηr = ρ∆(r+2)|∇rS| , r = 2, 4, 6... (8)

where ∆ is local grid spacing and S = (S : S)1/2 is the magnitude of the strain

rate tensor. The ∇rS term denotes successive applications of the Laplacian

operator, e.g., r = 4 corresponds to the biharmonic operator, ∇4S = ∇2(∇2S).

The overbar (ψ) denotes a truncated-Gaussian filter, defined as

ψ(x) =

L
∫

−L

G(||x − ξ||; L)ψ(ξ)d3ξ , (9)

where

G(ζ; L) =
e−6ζ2/L2

∫ L
−L e−6ζ2/L2dζ

, L = 4∆ . (10)

In practice, (9) is approximated by taking a weighted average among neigh-
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boring grid points. This filter helps remove high wavenumbers introduced by

the absolute value operator, which in turn, ensures that the viscosities are

positive definite.

Equation (8) corresponds to Smagorinsky’s model if r, Cr
β and L are all set

to 0. Inclusion of the bulk viscosity term is the key to capturing shocks with-

out destroying vorticity, i.e., β can be made large (to smooth shocks) without

impacting small-scale turbulence in regions where ∇ · u ≈ 0. Additionally, by

setting r > 0 the viscosity keys directly on the ringing, rather than indirectly

on gradients. This eliminates the need for adhoc limiters and switches to turn

off β in special cases, e.g., expansion, isentropic compression, rigid rotation

etc. [8]. It also removes the need for a “dynamic procedure” [11] to turn off

µ in regions of uniform shear. The Laplacian operator(s) have some theoreti-

cal justification in that they impart a high-wavenumber bias to the artificial

viscosity, thus approximating the cusp in the Heisenburg-Kraichnan spectral

viscosity [12, 13] for isotropic turbulence. Cook and Cabot [10] have demon-

strated, for smooth flow in 1 dimension, that higher convergence rates can

be achieved by increasing r. However, larger values of r require higher-order

approximations for the derivatives. Anticipating implementation of the model

on nonuniform grids, where only a single Laplacian is feasible, we chose r = 2

for the current simulations and set C2
µ = 0.025 and C2

β = 5. Recommended

values for the empirical coefficients with r = 4 are C4
µ = 0.002 and C4

β = 1.

In evaluating the model, it is desirable to use a numerical scheme with low

truncation error and minimal implicit dissipation, which would otherwise com-

pete with τ . Therefore we use Fourier transforms to compute spatially-periodic

derivatives, a tenth-order compact scheme [14] for nonperiodic derivatives, and

a 4th-order Runge-Kutta (RK4) scheme for temporal integration. Dealiasing
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is accomplished by applying a (2/3)-wavenumber truncation to the conserved

variables after each RK4 substep. Details of the numerical method are given

in Cook and Cabot [10]. The simulations reported here were all performed on

uniform Cartesian grids, where ∆x = ∆y = ∆z = ∆.

Our first test case is a canonical model of a one-dimensional shock-turbulence

interaction, i.e., Shu’s problem [15]. The initial conditions are: ρ = 3.857143,

p = 10.33333 and u = 2.629369 for x < −4; ρ = 1 + 0.2 sin(πx), p = 1 and

u = 0 for x ≥ −4, and γ = 1.4. As the shock propagates into the sinusoidal

density field, it leaves a steeply oscillating flow in the post-shock region. Figure

1 shows the effect of the hyperviscosity model on the flow, where “model off”

corresponds to Cr
µ = Cr

β = 0. The model removes nonphysical oscillations

surrounding the shock without attenuating physical oscillations in the shock’s

wake.

Our second test case is the spherical Noh implosion [16]. The initial conditions

are: ρ = 1, p = 0 and u = unit vector directed toward origin, with γ = 5/3.

In this problem, an infinite-strength shock expands outward from the origin

at a constant velocity of 1/3. This objective here is to test the ability of a

scheme to preserve spherical symmetry and produce the correct entropy jump

for adiabatic shock compression. In some sense, this problem represents a

worst-case scenario for artificial viscosity methods, since any additional heat-

ing from the dissipation function results in reduced compression. This test

case suffers a well-known “wall heating” problem [16, 8], arising from the sin-

gularity in the initial velocity field. Hence, for this problem only, we adopted

the standard remedy of introducing an artificial thermal conductivity, namely

σ∆ = 5cpρ∆
√

|e|. This has the effect of spreading out heat near the origin.

In Fig. 2, density is plotted versus radius at two different angles to the grid.
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Fig. 1. Density field for Shu’s problem at t = 1.8. The solid curve is the converged

solution. The “model off” and “model on” simulations were both conducted at a

grid resolution of ∆ = 0.04.

Without the hyperviscosity model, the simulation became unstable (with or

without σ∆) and failed to complete; hence, only the results with the model

active are shown. As indicated by the coincidence of the on-axis and off-axis

density curves, the model is insensitive to grid orientation, i.e., it maintains

spherical symmetry, albeit with a slight amount of post-shock ringing in grid-

aligned directions (dotted line). Regarding the entropy jump, the simulated

shock does not quite produce the theoretical post-shock density of ρ = 64 due

to viscous heating. This however, is not much different than results produced
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Fig. 2. Density versus radius for Noh’s problem at t = 0.6. The dotted line is along

the z-axis (θ = φ = 0) and the dashed line is diagonal to the grid (θ = φ = 45o).

The simulation was conducted on an octant of a sphere with ∆ = 10−3.

by Arbitrary Lagrangian Eulerian (ALE) methods [8]. The compression ratio

is resolution dependent; e.g., for ∆ = 5 × 10−3 and ∆ = 10−3 the post-shock

density is 55.2 and 62.3, respectively. Therefore, the artificial bulk viscosity

method is applicable to very strong shocks, provided sufficient resolution is

allocated to the problem.

Our third test case is the Taylor-Green vortex [17]. This problem is designed to

7



test a model’s ability to preserve resolved-scale vorticity. The initial conditions

are:

ρ = 1

u = sin(x) cos(y) cos(z)

v =− cos(x) sin(y) cos(z)

w = 0

p = 100 + ρ{[cos(2z) + 2][cos(2x) + cos(2y)] − 2}/16

γ = 1.4

where the pressure corresponds to incompressible flow (Poisson solution). The

arbitrary constant of 100 is selected to make the Mach number very low,

such that the flow remains essentially incompressible. The flow domain (V )

is a triply-periodic (2π)3 box on a 643 grid. The vortex stretches and bends,

driving vorticity to smaller scales. Figure 3 shows normalized total enstrophy,

i.e., Ω(t)/Ω(0), where

Ω(t) =
1

2

∫

V

ω · ω dV , ω = ∇× u ,

as a function of time, for simulations with and without the model. The semi-

analytic solution [18, 19], accurate up to about t = 3.5, is also plotted for

comparison. The simulations give nearly identical results so long as the flow

is well-resolved. It is only late in time, when vorticity begins to concentrate

near the grid scale, that µ∆ begins to damp velocity gradients.

Our fourth and final test case is the decaying turbulence experiment of Kang

et al. [20]. In their experiment, air is blown past an active grid in the Corrsin

wind tunnel [21, 22], generating near-isotropic turbulence at a Taylor mi-

croscale Reynolds number of about 720. An array of four X-wire probes is

used to measure velocity at downstream stations: x/M = 20, 30, 40 & 48,

where M is the shaft spacing of the active grid. The initial conditions for the
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Fig. 3. Normalized enstrophy for the Taylor-Green vortex with ∆ = 2π/64.

simulations consist of a triply-periodic velocity field in a 1923 box, with a ki-

netic energy spectrum matched to first 64 wavenumbers of the experimental

spectrum at x/M = 20. Pressure is initialized by solving a Poisson equation

with ∇ · u = 0. Simulation time is related to distance downstream using the

mean flow velocity, i.e., x = Ut. Figure 4 depicts the evolution of the 3-D

kinetic energy spectrum, E(k), as well as the decay of turbulent kinetic en-

ergy, KE, for the experiment and simulations. The results indicate that the

hyperviscosity model provides the correct rate of subgrid-scale energy transfer,

resulting in a robust Kolmogorov, k(−5/3), spectrum and correct rate of energy

9



Fig. 4. Evolution of 3-D energy spectrum, E(k), for high Reynolds number wind

tunnel experiment of Kang et al. [20]. The inset in the first plot shows decay of

turbulent kinetic energy (KE). The vertical lines correspond to the 2/3 wavenumber

truncation, which serves to dealias the numerical simulations.

decay. With no subgrid-scale model, the spectral energy flux is corrupted, as

evidenced by the anomalous curvature of the spectrum and too-rapid decay

of turbulent kinetic energy.

In summary, we have proposed an artificial viscosity suitable for both shocks

and turbulence. It employs a bulk viscosity, designed to produce monotonic
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shocks, and a dynamic viscosity, designed to model subgrid-scale turbulence.

The model is straightforward to implement and should provide improved

means for simulating shock-turbulence interactions.
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